Enhancing Video Games Policy Based on Least-Squares Continuous Action Policy Iteration: Case Study on StarCraft Brood War and Glest RTS Games and the 8 Queens Board Game

نویسندگان

  • Shahenda Sarhan
  • Mohamed Abu ElSoud
  • Hebatullah Rashed
چکیده

With the rapid advent of video games recently and the increasing numbers of players and gamers, only a tough game with high policy, actions, and tactics survives. How the game responds to opponent actions is the key issue of popular games.Many algorithms were proposed to solve this problem such as Least-Squares Policy Iteration (LSPI) and State-Action-Reward-State-Action (SARSA) but they mainly depend on discrete actions, while agents in such a setting have to learn from the consequences of their continuous actions, in order to maximize the total reward over time. So in this paper we proposed a new algorithm based on LSPI called LeastSquares Continuous Action Policy Iteration (LSCAPI). The LSCAPI was implemented and tested on three different games: one board game, the 8 Queens, and two real-time strategy (RTS) games, StarCraft BroodWar and Glest.The LSCAPI evaluation proved superiority over LSPI in time, policy learning ability, and effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks

Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...

متن کامل

TorchCraft: a Library for Machine Learning Research on Real-Time Strategy Games

We present TorchCraft, a library that enables deep learning research on Real-Time Strategy (RTS) games such as StarCraft: Brood War, by making it easier to control these games from a machine learning framework, here Torch [9]. This white paper argues for using RTS games as a benchmark for AI research, and describes the design and components of TorchCraft.

متن کامل

Real-Time Strategy Game Competitions

106 AI MAGAZINE RTS games — such as StarCraft by Blizzard Entertainment and Command and Conquer by Electronic Arts — are popular video games that can be described as real-time war simulations in which players delegate units under their command to gather resources, build structures, combat and support units, scout opponent locations, and attack. The winner of an RTS game usually is the player or...

متن کامل

Artificial Intelligence in Video Games: Towards a Unified Framework

With modern video games frequently featuring sophisticated and realistic environments, the need for smart and comprehensive agents that understand the various aspects of complex environments is pressing. Since video game AI is often specifically designed for each game, video game AI tools currently focus on allowing video game developers to quickly and efficiently create specific AI. One issue ...

متن کامل

Automatic Observer Script for StarCraft: Brood War Bot Games (technical report)

This short report describes an automated BWAPI-based script developed for live streams of a StarCraft Brood War bot tournament, SSCAIT. The script controls the in-game camera in order to follow the relevant events and improve the viewer experience. We enumerate its novel features and provide a few implementation notes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Computer Games Technology

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016